Spectral Flow Cytometry
ثبت نشده
چکیده
Figure 1: Schematic of the particles in the fluid flow and interaction region of the laser within the flow cell. A key and continuing goal in the development of flow cytometry techniques is the ability to measure ever more parameters for each particle under test. Work carried out by Prof John Nolan’s group at La Jolla Bioengineering Institute, and reported recently by Watson et. al.[1] in Cytometry A,outlines the development and operation of a Raman Spectral Flow Cytometer (RSFC), which is perhaps the most radical and challenging approach to current efforts in spectral flow cytometry.In their ‘proof of principle’ system, they bring together Raman spectroscopy, via surface enhanced Raman (SERS),and conventional flow cytometry, by substituting a dispersive-optic spectrograph with multichannel detector (CCD), in place of the traditional mirrors/beam splitters, filters and photomultipliers (PMT) of conventional flow cytometers. They demonstrate a system of sufficient sensitivity to acquire and analyze SERS spectra with good spectral resolution from samples consisting of nanoparticle SERS tags bound to microspheres. The functionality and power of the system is illustrated using two analytical methods, virtual bandpass filtering and principal component analysis (PCA), to distinguish between the different Raman species within their test samples.
منابع مشابه
Spectral Cytometry Has Unique Properties Allowing Multicolor Analysis of Cell Suspensions Isolated from Solid Tissues
Flow cytometry, initially developed to analyze surface protein expression in hematopoietic cells, has increased in analytical complexity and is now widely used to identify cells from different tissues and organisms. As a consequence, data analysis became increasingly difficult due the need of large multi-parametric compensation matrices and to the eventual auto-fluorescence frequently found in ...
متن کاملNovel full‐spectral flow cytometry with multiple spectrally‐adjacent fluorescent proteins and fluorochromes and visualization of in vivo cellular movement
Flow cytometric analysis with multicolor fluoroprobes is an essential method for detecting biological signatures of cells. Here, we present a new full-spectral flow cytometer (spectral-FCM). Unlike conventional flow cytometer, this spectral-FCM acquires the emitted fluorescence for all probes across the full-spectrum from each cell with 32 channels sequential PMT unit after dispersion with pris...
متن کاملSingle particle high resolution spectral analysis flow cytometry.
BACKGROUND While conventional multiparameter flow cytometers have proven highly successful, there are several types of analytical measurements that would benefit from a more comprehensive and flexible approach to spectral analysis including, but certainly not limited to spectral deconvolution of overlapping emission spectra, fluorescence resonance energy transfer measurements, metachromic dye a...
متن کاملData-Driven Compensation for Flow Cytometry of Solid Tissues
Propidium Iodide is a fluorochrome that is used to measure the DNA content of individual cells, taken from solid tissues, with a flow cytometer. Compensation for spectral cross-over of this fluorochrome still leads to compensation results that are depending on operator experience. We present a data-driven compensation (DDC) algorithm that is designed to automatically compensate combined DNA phe...
متن کاملSingle cell analysis using surface enhanced Raman scattering (SERS) tags.
Fluorescence is a mainstay of bioanalytical methods, offering sensitive and quantitative reporting, often in multiplexed or multiparameter assays. Perhaps the best example of the latter is flow cytometry, where instruments equipped with multiple lasers and detectors allow measurement of 15 or more different fluorophores simultaneously, but increases beyond this number are limited by the relativ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018